Answer:
f = 614.28 Hz
Explanation:
Given that, the length of the air column in the test tube is 14.0 cm. It can be assumed that the speed of sound in air is 344 m/s. The test tube is a kind of tube which has a closed end. The frequency in of standing wave in a closed end tube is given by :


f = 614.28 Hz
So, the frequency of the this standing wave is 614.28 Hz. Hence, this is the required solution.
Answer:
it comes from your knowledge and the information you have to get the reason why that is the answer so you are putting together things that you already know what the new information you have
<span>Galileo Galilei was the first astronomer to use a telescope to study the heavens. Galileo made a number of observations that finally helped convince people that the Sun-centered solar system model (the heliocentric model), as proposed by Copernicus, was correct. These arguments can be divided into two kinds: Those that proved that the Ptolemaic model was incorrect and those that undermined the broader philosophy of Aristotelianism that included the Ptolemaic model. We'll first consider some philosophically important observations and then the ones that pro</span>
Answer: gravitational potential energy is converted into kinetic energy
Explanation:
When the diver stands on the platform, at 20 m above the surface of the water, he has some gravitational potential energy, which is given by

where m is the man's mass, g is the gravitational acceleration and h is the height above the water. As he jumps, the gravitational potential energy starts decreasing, because its height h above the water decreases, and he acquires kinetic energy, which is given by

where v is the speed of the diver, which is increasing. When he touches the water, all the initial gravitational potential energy has been converted into kinetic energy.