Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
Answer:
• 36.4 kg of coal.
• 80 pounds of coal.
Explanation:
Using proportionality constant,
Mass of coal = 1,000,000/27,500,000 btus/metric ton
= 0.0364 metric tons of coal
Mass of coal = 1,000,000/25,000,000 btus/ton
= 0.04 tons of coal.
Converting metric tons to kilogram,
1 metric ton = 1000kg,
0.0364 metric ton;
= 36.4 kg of coal.
Converting tons to pounds,
1 ton = 2000 pounds,
0.04 metric ton;
= 80 pounds of coal.
Not sure this is a physics question (probably biology).
Anyway, the correct answer is A):
"Plasticity helps us to adapt to our environment. It also generally decreases with age".
Plasticity is the ability to adapt to the environment. Since this ability is linked with brain functions, and brain functions worsen with age, then plasticity decreases with age.
Answer:
Pluto
Explanation:
In our solar system, we have several planet. Pluto is one of the. Pluto is a planet that is highly oval shaped orbit and eccentric that brings it inside the another orbit. It get inside the orbit of Neptune. Sometimes even Neptune get far away from sun in comparison to the dwarf planet Pluto.
It is very strange happening in the world of planet. it occurs in the year of 1979 and 1999. But Pluto never ever crashed into Neptune. It happen because Neptune takes every three lapse that takes around the sun but Pluto makes only two lapse. This happening prevents two bodies from clashes.
Answer:
Explanation:
angular momentum of the putty about the point of rotation
= mvR where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .
= .045 x 4.23 x 2/3 x .95 cos46
= .0837 units
moment of inertia of rod = ml² / 3 , m is mass of rod and l is length
= 2.95 x .95² / 3
I₁ = .8874 units
moment of inertia of rod + putty
I₁ + mr²
m is mass of putty and r is distance where it sticks
I₂ = .8874 + .045 x (2 x .95 / 3)²
I₂ = .905
Applying conservation of angular momentum
angular momentum of putty = final angular momentum of rod+ putty
.0837 = .905 ω
ω is final angular velocity of rod + putty
ω = .092 rad /s .