Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
You can use P1V1/T1 = P2V2/T2 but since pressure is constant is becomes V1/T1=V2/T2
V1=0.5 L
T1=203 K
T2=273 K
V2=unknown
0.5L/203 = V2/273
V2= 0.67 L so C
Hope this helps :)
The answer is C. Nicotine is the substance found in tobacco smoke that stimulates the brain.
Answer:
The answer is pyruvate → lactate
Explanation:
In the reaction of glycolysis, glucose breaks down to form pyruvate yielding ATP and NADH.
Under or during strenuous exercise, which is an anaerobic condition, lactate is formed by the reoxidization of NADH and the conversion of pyruvate to lactate.
Explanation:
Planck's law describes the spectral density of electromagnetic radiation produced by a black body in thermal equilibrium at a given temperature, where there is no net flow of matter or energy between the body and its environment.
Hope this helps : )