Answer:
1.35m
Explanation:
At the highest point of the jump, the vertical speed of the skier should be 0. So the 13m/s speed is horizontal, this speed stays the same from the jumping point to the highest point. The 14m/s speed at jumping point is the combination of both vertical and horizontal speeds.
The vertical speed at the jumping point can be computed:




When the skier jumps to the its potential energy is converted to kinetic energy:


where m is the skier mass and h is the vertical distance traveled,
is the vertical velocity at jumping point, and h is the highest point.
Let g = 10m/s2
We can divide both sides of the equation by m:

Answer:
Explanation:
Given

Motor reverse its direction when \omega =0



(b)





We need to consider for this exercise the concept Drag Force and Torque. The equation of Drag force is

Where,
F_D = Drag Force
= Drag coefficient
A = Area
= Density
V = Velocity
Our values are given by,
(That is proper of a cone-shape)



Part A ) Replacing our values,


Part B ) To find the torque we apply the equation as follow,



Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>