A wave with a period of 1⁄3 second has a frequency of D. 3 Hz. To
calculate this we will use the formula that represents the correlation
between a frequency (f) and a time period (T): T = 1/f. Or: f = 1/T. The
unit for the time period is second "s" while the unit for frequency is
Hertz "Hz" (=1/s). We know that T = 1/3 s. That means that f = 1/(1/3s) =
3 1/s = 3 Hz.
The change in the internal energy of the ideal gas is determined as -28 J.
<h3>
Work done on the gas</h3>
The work done on the ideal gas is calculated as follows;
w = -PΔV
w = -1.5 x 10⁵(0.0006 - 0.0002)
w = -60 J
<h3>Change in the internal energy of the gas</h3>
ΔU = w + q
ΔU = -60J + 32 J
ΔU = -28 J
Thus, the change in the internal energy of the ideal gas is determined as -28 J.
Learn more about internal energy here: brainly.com/question/23876012
#SPJ1
Answer: 5.8 m/s squared
Explanation: just got that question lol
Answer:
the force of the friction is A-0.52