Answer:
f = 8 %
Explanation:
given,
density of body of fish = 1080 kg/m³
density of air = 1.2 Kg/m³
density of water = 1000 kg/m²
to protect the fish from sinking volume should increased by the factor f
density of fish + density of water x increase factor = volume changes in water
1080 +f x 1.2 =(1 + f ) x 1000
1080 + f x 1.2 = 1000 + 1000 f
998.8 f = 80
f = 0.0800
f = 8 %
the volume increase factor of fish will be equal to f = 8 %
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer:
4.54
Explanation:
X+10X=50
11X=50
X=4.54#
<h2>please follow me...</h2>
Newton’s fifth law says so i’m sorry it’s just logic
Answer:
-963.93 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The acceleration of Superman would be -963.93 m/s² from Lois' perspective