Answer:
Red photons have the least amount of energy
Explanation:
The relationship between the photon energy and the color of light is given by:

where
E is the energy
h is the Planck constant
c is the speed of light
is the wavelength (which determines the color of light)
As we see from the equation, energy and wavelength are inversely proportional: this means that the longer the wavelength, the lower the energy, and viceversa.
Among the colors in the visible light spectrum, red is the color with longest wavelength (620-750 nm) and violet is the color with shortest wavelength (380-450 nm). This means that red photons have the least amount of energy, while violet photons have the greatest amount of energy.
So the correct choice is
Red photons have the least amount of energy
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.
Answer:27 km per hour West + 17 km per hour North
In the Missouri Compromise, the slavery line for future US states ran along the southern border of Missouri at 36 degrees north 30 minutes