From the first law of thermodynamics, we use the equation expressed as:
ΔH = Q + W
where Q is the heat absorbed of the system and W is the work done.
We calculate as follows:
ΔH = Q + W
ΔH = 829 J + 690 J = 1519 J
Hope this answers the question. Have a nice day.
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed
and changes it to
. The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by

The initial and final momentums are, respectively

The change of momentum is

It is numerically equal to the Impulse J


We are given

The impulse the car experiences during that time is

J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
5
Explanation:
hbmhbhjvjhvkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Answer:
C
Explanation:
Formula E=F/C also E=V/d
In this case use the second formula; E=V/d
Data given; E=4N/C d=8m
So v=E X d
V=4x8=32V
k.e=eV= 2X32=64eV
Kinetic, potential because, at the top of the ramp it’s going faster. Potential at the bottom of the ramp is potential because, it’s not doing any motion.