Answer:

Explanation:
Amplitude is 35/2=17.5
Midline= Distance from ground + Amplitude = 17.5+3= 20.5
Period is time taken to finish 6 minutes
2π/b=T
2π/b=6
b=π/3

Answer:
After a male ejaculates, many sperms move to the upper vagina (via contractions from the vagina) through the cervix and across the length of the uterus, reaching the fallopian tubes. Here they will meet the egg cell ready to be fertilized
Answer:
The centripetal acceleration of the stone is 5 m/s²
Explanation:
The length of the string to which the stone is attached, r = 1 m
The speed with which the string is rotated, v = 5 m/s
The centripetal acceleration,
, is given as follows;

Therefore, the centripetal acceleration of the stone found as follows;

The centripetal acceleration of the stone,
= 5 m/s².
Planck find the correct curve for the specturm of light emitted by a hot object by vibrational energies of the atomic resonators were quantized.
<h3>Briefing :</h3>
- The energy density of a black body between λ and λ + dλ is the energy E=hc/λ of a mode times the density of states for photons, times the probability that the mode is occupied.
- This is Planck's renowned equation for a black body's energy density.
- According to this, electromagnetic radiation from heated bodies emits in discrete energy units or quanta, the size of which depends on a fundamental physical constant (Planck's constant). The basis of infrared imaging is the correlation between spectral emissivity, temperature, and radiant energy, which is made possible by Planck's equation.
Learn more about the Planck's constant with the help of the given link:
brainly.com/question/27389304
#SPJ4
Answer:
(a) 1.21 m/s
(b) 2303.33 J, 152.27 J
Explanation:
m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s
(a) Let their velocity after striking is v.
By use of conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v
v = ( - 356.25 + 607.94) / 208 = 1.21 m /s
(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2
= 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)
= 0.5 (1335.94 + 3270.7) = 2303.33 J
Kinetic energy after collision = 1/2 (m1 + m2) v^2
= 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J