Explanation:
0.566kg *(1mol/0.197 kg)= 2.87 mol gold
note how the units cancel out, if the units do not cancel out (kg/kg=1) then u did something wrong
Answer:
C. Quadruple the intensity
Explanation:
The intensity of the sound is proportional to square of amplitude of the sound.
I ∝ A²

When the given sound is twice loud as the initial value, then the new amplitude is twice the former.
A₂ = 2A₁

Thus, to make a given sound seem twice as loud, the musician should Quadruple the intensity
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

Answer:
Energy of wave will increase as the energy of wave is related to the amplitude of wave