Answer:
Mercury / Mars
Explanation:
For an object launched straight upward, the following SUVAT equation can be used

where
v is the final velocity
u is the initial velocity
g is the acceleration of gravity (free fall acceleration) (the negative sign is due to the downward direction of gravity)
h is the maximum height reached
At the maximum height, the velocity is zero, so v = 0. Re-arranging the equation,

So we see that for equal initial velocity (u), the maximum height reaches is inversely proportional to the acceleration of gravity. Therefore, the potato gun will reach the highest altitude in the planets with lowest acceleration of gravity, therefore Mercury and Mars (3.7 and 3.6 m/s^2).
Answer:
Option (3)
Explanation:
Formula used to calculate acceleration is,
F = ma
Where F = force exerted on a mass
m = mass
a = acceleration due to force exerted on the mass
Option (1),
When F = 100 N and m = 100 kg
100 = 100a
a = 1 m per sec²
Option (2)
For F = 1 N and m = 100 kg
1 = 100a
a = 
a = 0.01 m per sec²
Option (3)
For F = 100 N and m = 1 kg
100 = 1(a)
a = 100 m per sec²
Option (4)
For F = 1 N and m = 1 kg
1 = 1(a)
a = 1 m per sec²
Therefore. acceleration in Option (3) is the maximum.
Answer:
It makes sense because on that the day the sun stops moving northward and starts moving southward
Explanation:
Well, Air resistance is a special type of friction (you cannot classify it in other categories). That force of air-resistance is often observed to oppose the motion of the object,( like every other frictional forces)
Hope this helps!