Answer:
Constant speed: yes
Constant velocity: no
Explanation:
Let's remind the definition of speed and velocity:
- Speed is a scalar quantity, which is equal to the ratio between the distance covered (regardless of the direction) and the time taken:

- Velocity is a vector quantity, so it has both a magnitude and a direction. The magnitude is equal to the rate between the displacement of the object and the time taken, while the direction is the same as the displacement.
In this problem, we notice that:
- The speed of the car remains constant, as it is 90 km/h
- However, its direction of motion changes while the car travels round the corner: this means that the direction of the velocity is also changing, therefore velocity is not constant.
More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.
It’s D. An enlargement (hope this helps!)
Answer:
C. Quadruple the intensity
Explanation:
The intensity of the sound is proportional to square of amplitude of the sound.
I ∝ A²

When the given sound is twice loud as the initial value, then the new amplitude is twice the former.
A₂ = 2A₁

Thus, to make a given sound seem twice as loud, the musician should Quadruple the intensity
Answer:
Introducing a dielectric into a capacitor decreases the electric field, which decreases the voltage, which increases the capacitance.
Explanation:
A dielectric (or dielectric material) is an electrical insulator that can be polarized by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization
Types of dielectric material
Ceramic, Mica paper glass