Answer:
A. it is the lowest at low temperatures
Explanation:
It is true with respect to the kinetic energy of a molecule that the it is the lowest at low temperatures.
The kinetic energy of a molecule is the energy due to the motion of the particles within a substance.
- Kinetic energy is directly proportional to the temperature of a substance.
- The higher the temperature, the more the kinetic energy of the molecules within a system.
- At low temperature, kinetic energy is the lowest.
- At the highest temperature, kinetic energy is the highest
This element is found in group 3A, period 3
<h3>Further explanation
</h3>
The maximum number of electrons that can be filled in the nth electron shell is 2n²(n=shell)
-
K shell (n = 1) maximum 2 x 1² = 2 electrons
- L shell (n = 2) maximum 2 x 2² = 8 electrons
- M shell (n = 3) maximum 2 x 3² = 18 electrons
- N shell (n = 4) maximum 2 x 4² = 32 electrons
Electron configuration of element X : 2.8.3 , so :
K shell = 2 ⇒1s²
L shell = 8⇒2s²2p⁶
M shell = 3⇒ 3s²3p¹
Block p: group 13-18 (has a 2p-6p configuration), also called a representative element because it includes metals, non-metals and metalloids
The outer shell 3s²3p¹ : located in group 3A and period 3
group⇒valence electron ⇒3
period⇒the greatest value of the quantum number n⇒3
Answer:
A. Solution, Colloid, Suspension
Hope i could help
Moles of Bromine produced = 9 moles
<h3>Further explanation</h3>
Given
9 moles of Chlorine gas
Word equation
Required
Moles of Chlorine produced
Solution
We change the word equation into a chemical equation (with a formula)
Aluminum bromide reacts with chlorine gas to produce Aluminum chloride and bromide gas
2AlBr₃+3Cl₂⇒2AlCl₃+3Br₂
moles Cl₂ = 9
Maybe you mean, <em>how many moles of Bromine can we produce?</em>
From equation, mol ratio Cl₂ : Br₂ = 3 : 3, so mol Br₂=mol Cl₂=9 moles