Answer:
a) 0.714g of bicarbonate of soda are required.
b) 0.221g of Al(OH)₃ are required
Explanation:
The reactions of HCl with bicarbonate of soda and aluminium hydroxide are:
HCl + NaHCO₃ → H₂O + NaCl + CO₂
3 HCl + Al(OH)₃ → 3H₂O + AlCl₃
The moles of HCl that we need neutralize are:
50mL = 0.050L * (0.17mol / L) = 0.0085 moles HCl
To solve these problem we need to find the moles of the antacid using the chemical reaction and its mass using its molar mass;
<em>a) </em><em>Moles NaHCO₃ = Moles HCl = 0.0085 moles </em>
The mass is -Molar mass NaHCO₃: -84g/mol-
0.0085 moles * (84g / mol) = 0.714g of bicarbonate of soda are required
b) 0.0085 moles HCl * (1mol Al(OH)₃ / 3mol HCl) = 2.83x10⁻³ moles Al(OH)₃
The mass is -Molar mass: 78g/mol-:
2.83x10⁻³ moles Al(OH)₃ * (78g/mol) =
<h3>0.221g of Al(OH)₃ are required</h3>
Answer:
Training officers in how to properly collect evidence
Explanation:
Forensic science is an interesting branch of science that involves the use of scientific procedures to solve a crime case. It encompasses collection of physical evidence from the crime scene and analyzing it in a laboratory using scientific means.
A forensic scientist is the individual in charge of performing these scientific procedures. His/her major role is to run the scientific analysis of the physical evidence brought in by the officers, however, he/she can also perform the task of training officers in how to properly collect evidence, in order not to damage the evidence or render it invalid for use.
Answer:
\left \{ {{y=206} \atop {x=82}}Pb \right.
Explanation:
isotopes are various forms of same elements with different atomic number but different mass number.
Radioactivity is the emission of rays or particles from an atom to produce a new nuclei. There are various forms of radioactive emissions which are
- Alpha particle emission \left \{ {{y=4} \atop {x=2}}He \right.
- Beta particle emission \left \{ {{y=0} \atop {x=-1}}e \right.
- gamma radiation \left \{ {{y=0} \atop {x=0}}γ \right.
in the problem the product formed after radiation was Pb-206. isotopes of lead include Pb-204, Pb-206, Pb-207, Pb-208. they all have atomic number 82. which means the radiation cannot be ∝ or β since both radiations will alter the atomic number of the parent nucleus.
Only gamma radiation with \left \{ {{y=0} \atop {x=0}}γ \right. will produce a Pb-206 of atomic number 82 and mass number 206 , since gamma ray have 0 mass and has 0 atomic number.equation is shown below
\left \{ {{y=206} \atop {x=82}}Pb\right ⇒ \left \{ {{y=206} \atop {x=82}}Pb\right + \left \{ {{y=0} \atop {x=0}}γ\right.
Thus the atomic symbol is \left \{ {{y=206} \atop {x=82}}Pb\right
Answer: 7.98 grams of
are produced if 10.7 grams of
are reacted.
Explanation:
To calculate the number of moles, we use the equation:
.....(1)
Putting values in equation 1, we get:
The chemical equation for the reaction is
By Stoichiometry of the reaction:
2 moles of
produce = 1 mole of
So, 0.100 moles of
produce=
of
Mass of
=
Hence 7.98 grams of
are produced if 10.7 grams of
are reacted.
Answer:
The concentration of protons affects an enzyme's folded structure and reactivity.
Explanation:
Enzymes act within narrow pH limits (optimal reaction pH). Since most enzymes have a protein structure, the variation in pH or temperature affects their enzymatic activity.
To catalyze a reaction, an enzyme binds to one or more reagent molecules. These molecules are the substrates of the enzyme.
In some reactions, a substrate breaks into several products. In others, two substrates join together to create a larger molecule or to exchange parts. In fact, for any biological reaction that can occur to you, there is probably an enzyme to accelerate it.
The part of the enzyme where the substrate binds is called the active site.
The amino acid residues of the active site often have acidic or basic properties that are important for catalysis. Changes in pH can affect these residues and make binding with the substrate difficult.