24➗2.88=0.8
30➗0.8 = 3.75
So the answer is 3.75
Answer:
Step-by-step explanation:
not sure sorry ask a parent
![\bf \textit{Logarithm Cancellation Rules} \\\\ \stackrel{\stackrel{\textit{we'll use this one}}{\downarrow }}{log_a a^x = x}\qquad \qquad a^{log_a x}=x~\hfill\stackrel{recall}{ln=log_e}\qquad log_e(e^z)=z \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7BLogarithm%20Cancellation%20Rules%7D%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B%5Cdownarrow%20%7D%7D%7Blog_a%20a%5Ex%20%3D%20x%7D%5Cqquad%20%5Cqquad%20a%5E%7Blog_a%20x%7D%3Dx~%5Chfill%5Cstackrel%7Brecall%7D%7Bln%3Dlog_e%7D%5Cqquad%20log_e%28e%5Ez%29%3Dz%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)

and you plug that in your calculator to get about -0.27465307216702742285.
Answer:
I think the answer is 20 ..........
Step-by-step explanation:
5