1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges
Answer:
I Will say the Answer is A
Explanation:
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr
Answer:
D
Explanation:
First we define our variables
V0=29.4
a=-9.8
V=0
We have to find the maximum displacement , which I will define as X
We use formula v^2=v0^2+2aX
All we do is substitute our values
0=29.4^2-19.6X
29.4^2=19.6X
X=29.4^2/19.6=44.1
Answer:
The common velocity v after collision is 2.8m/s²
Explanation:
look at the attachment above ☝️