1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
2 years ago
14

Analyze if the frequency of a sound wave increases what happnes to the wavelength

Physics
2 answers:
nikklg [1K]2 years ago
4 0

Answer:

it's either a b c or do I swear

DIA [1.3K]2 years ago
4 0
Can you mark me brainliest please I’m trying to rank up!:)
You might be interested in
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
What electrons are in “motion”, what do you have?
Sergeeva-Olga [200]

Answer:

When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.

7 0
3 years ago
A train slows down as it rounds a sharp horizontal turn, going from 94.0 km/h to 46.0 km/h in the 17.0 s that it takes to round
Svetllana [295]

Answer:

1.41 m/s^2

Explanation:

First of all, let's convert the two speeds from km/h to m/s:

u = 94.0 km/h \cdot \frac{1000 m/km}{3600 s/h} = 26.1 m/s

v=46.0 km/h \cdot \frac{1000 m/km}{3600 s/h}=12.8 m/s

Now we find the centripetal acceleration which is given by

a_c=\frac{v^2}{r}

where

v = 12.8 m/s is the speed

r = 140 m is the radius of the curve

Substituting values, we find

a_c=\frac{(12.8 m/s)^2}{140 m}=1.17 m/s^2

we also have a tangential acceleration, which is given by

a_t = \frac{v-u}{t}

where

t = 17.0 s

Substituting values,

a_t=\frac{12.8 m/s-26.1 m/s}{17.0 s}=-0.78 m/s^2

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

a=\sqrt{a_c^2+a_t^2}=\sqrt{(1.17 m/s^2)+(-0.78 m/s^2)}=1.41 m/s^2

6 0
3 years ago
Read 2 more answers
A car is moving in uniform circular motion. If the cars speed were to double to keep the car moving with the same radius the acc
Stells [14]

Answer:

<em>The centripetal acceleration would increase by a factor of 4</em>

<em>Correct choice: B.</em>

Explanation:

<u>Circular Motion</u>

The circular motion is described when an object rotates about a fixed point called center. The distance from the object to the center is the radius. There are other magnitudes in the circular motion like the angular speed, tangent speed, and centripetal acceleration. The formulas are:

v_t=w\ r

\displaystyle a_c=\frac{v_t^2}{r}

If the speed is doubled and the radius is the same, then

\displaystyle a_c=\frac{(2v_t)^2}{r}

\displaystyle a_c=4\frac{v_t^2}{r}

The centripetal acceleration would increase by a factor of 4

Correct choice: B.

5 0
3 years ago
A pendulum with a length of 1.00 m is released from an initial angle of 12.5°. After 1 000 s, its amplitude has been reduced by
Viefleur [7K]

Answer:

A student is conducting a pendulum experiment. Which of the following pieces of safety equipment would be the most vital to conduct this test?

Explanation:nduebidndo eyn h ehj jd

jknsjk Jjkfnjkjnuifvr

7 0
2 years ago
Other questions:
  • The absence of any mechanical linkage between the throttle pedal and the throttle body requires the use of a _______ motor.
    8·1 answer
  • During a lab, a student tapes a ruler to a lab table and sets the ruler in motion. A laser detector pointed at the ruler records
    8·1 answer
  • Why are triangles important when making structures
    12·1 answer
  • Any clue on this one
    7·1 answer
  • Which statement correctly describes the movement of thermal energy according to the second law of thermodynamics? The natural te
    8·2 answers
  • While water skiing behind her father’s boat, Letty is pulled at constant speed by a force of 164 N from the tow rope that makes
    15·1 answer
  • An undiscovered planet, many lightyears from Earth, has one moon in a periodic orbit. This moon takes 2060 × 103 seconds (about
    5·1 answer
  • La luz roja visible tiene una longitud de onda de 680 nanómetros (6,8 x 10-7 m). La velocidad de la luz es de 3.0 x108 m / s. ¿C
    7·1 answer
  • Why does compound pendulum have the identity of possessing two values of h corresponding to the same period of oscillation
    11·1 answer
  • Carousel conveyors are used for storage and order picking for small parts. The conveyorsrotate clockwise or counterclockwise, as
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!