The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:
STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.
STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,
STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.
Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,
Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
Answer:
5.61983 × 10^5
Explanation:
Move the decimal forward 5 spaces, each time doing so you add 10^(# of spaces moved, in this case 5)
Answer:
Mixtures
Explanation:
Matter can be classified as a compound and a mixture.
Ca=40
C=12
O=16
1 mole of CaCO3 has 100 grams
So 50 grams is 0.5 mole