Answer:
True:
- Hybrid orbitals within the same atom have the same energy and shape.
- Hybrid orbitals are described mathematically as a linear combination of atomic orbitals.
- An atom can have both hybridized and unhybridized orbitals at the same time.
Explanation:
Hybrid orbitals do not exist in isolated atoms. They form only in covalently bonded atoms.
Hybridization happens when several atomic orbitals combine to form other orbitals with the same energy and greater stability.
A set of hybrid orbitals is generated by combining atomic orbitals. The number of hybrid orbitals in a set is equal to the number of atomic orbitals that combined to produce the set.
Hybrid orbitals overlap to form σ bonds. Unhybridized orbitals overlap to form π bonds, and both can appear in an atom at the same time.
Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
I think it would be C) The surrounding soil can become very fertile
Answer:
the rise and fall is the tides.
In rubidium oxide - Rb₂O , the ions are Rb⁺ and O²⁻
Rb is a group one element with one valence electron. To become stable it loses its outer electron to gain a complete outer shell.
Electronic configuration of Rb is - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹
Once it loses its valence electron the configuration is;
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶
The noble gas with this configuration is Krypton - Kr
Oxygen electron configuration is 1s² 2s² 2p⁴
Once it gains 2 electrons the configuration is - 1s² 2s² 3p⁶
The noble gas with this configuration is Neon - Ne