Answer:
<h2>
f₀ = 158.12 Hertz</h2>
Explanation:
The fundamental frequency of the string f₀ is expressed as f₀ = V/4L where V is the speed experienced by the string.
where T is the tension in the string and
is the density of the string
Given T = 600N and
= 0.015 g/cm = 0.0015kg/m

The next is to get the length L of the string. Since the string is stretched and fixed at both ends, 200 cm apart, then the length of the string in metres is 2m.
L = 2m
Substituting the derived values into the formula f₀ = V/2L
f₀ = 632.46/2(2)
f₀ = 632.46/4
f₀ = 158.12 Hertz
Hence the fundamental frequency of the string is 158.12 Hertz
Answer:
b,c
Explanation:
Velocity refers to the rate of change of position with respect to time and acceleration refers to the rate of change of velocity with respect to time. Both velocity and acceleration are vector quantities
While the line of children is rotating, <u>the player at the front of the line has the smallest linear velocity and all the children have the same angular acceleration.</u>
Translate to English please
Work of the force = 10 N
Time required for the work = 50 sec
Height = 7 m
We are given with the value of work and time in the question.
Substitute the values in the formula of power and then you'll get the power required.
We know that,
w = Work
p = Power
t = Time
By the formula,
Given that,
Work (w) = 7 m = 70 Joules
Time (t) = 50 sec
Substituting their values,
p = 70/50
p = 1.4 watts
Therefore, the power required is 1.4 watts.
Hope it helps!
Answer:Fg = mg however newtons second law states that the net force acting on an object is equal to it's mass times it's acceleration so what allows us to say that Fg = mg because certainly not for every single situation the net force is going to equal to the force of gravity please explain... what allows us to say Fg = mg
Source https://www.physicsforums.com/threads/fg-mg-questioned.336776/
Explanation: