Hi there!
Recall:
Impulse = Change in momentum
I = Δp = mΔv = m(vf - vi)
Let the direction TOWARDS the floor be POSITIVE, and AWAY be NEGATIVE.
Plug in the givan values:
Δp = 1.5(-10 - 12) = -33 Ns
**OR, the magnitude: |-33| = 33 Ns
High Pitch sounds have relativity large frequency and small wavelength
Answer:
v = 27 m/s
Explanation:
To find the speed of cars after the collision you take into account the momentum conservation law. Total momentum of both cars before the collision must be equal to the total momentum of both cars after the collision.
After the collision both cars traveled together, then you have:
(1)
m1: mass of the Toyota = 3-ton = 3000 kg
m2: mass of the taxi = 2-ton = 2000kg
v1: speed of the Toyota before the collision = 45m/s
v2: speed of the car before the collision = 0 m/s (it is at rest)
v: speed of both cars after the collision = ?
You solve the equation (1) for v:

Next, you replace the values of the rest of the variables:

hence, just after the collision both cars have a speed of 27m/s
Answer:
C
Explanation:
because it is and it doesn't have to be in the indirect dialog
Answer:
b
Explanation:
I'm not so sure but it makes sense