(a) The stone travels a vertical distance <em>y</em> of
<em>y</em> = (12.0 m/s) <em>t</em> + 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the acceleration due to gravity. Note that this equation assume the downward direction to be positive, and that <em>y</em> = 0 corresponds to the height from which the stone is thrown.
So if it reaches the ground in <em>t</em> = 1.54 s, then the height of the building <em>y</em> is
<em>y</em> = (12.0 m/s) (1.54 s) + 1/2 (9.80 m/s²) (1.54 s)² ≈ 30.1 m
(b) The stone's (downward) velocity <em>v</em> at time <em>t </em>is
<em>v</em> = 12.0 m/s + <em>g t</em>
so that after <em>t</em> = 1.54 s, its velocity is
<em>v</em> = 12.0 m/s + (9.80 m/s²) (1.54 s) ≈ 27.1 m/s
(and of course, speed is the magnitude of velocity)
Answer: C and D
Explanation: One of the first rule for total internal reflection to occur is that the ray must move from a dense to a less dense medium, hence refractive index of medium a must be greater than that of b.
When a ray moves from a dense to a less dense medium, the refracted ray moves away from the normal thus increasing the size of the angle of refraction (total internal refraction occurs when the angle of refraction is 90° and the angle of incidence at this point is known as the critical angle), hence the angle of incidence must be greater than the critical angle.
These points verifies option C and D
By v = u - at
<span>=>8 = 12 - a x 0.25 </span>
<span>=>a = 4/0.25 km/hr/sec </span>
<span>=>a = 16km/hr/sec
I hope this helped!</span>