That's wave 'diffraction'.
Answer:
b. It is dropped
Explanation:
If the initial velocity is zero, the object move from rest. That happens if the object is dropped
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
Explanation:
(a) The given figure is a convex lens.
(b) In this figure, the object is placed between F and optical center of a lens. Convex lens is a converging lens. It converges the beam of light falling on it after reflection. The image is formed on the same side of the lens as the object.
The formed image is enlarged and it is virtual and erect.
(i) Type : virtual
(ii) Orientation : upright
(iii) Size : Enlarged
a
a
b
b
a
b
a
This will really help you learn a lot.