Answer:
D
Explanation:
The nuclear model of the atom was proposed by Ernest Rutherford.
In his submission, the atom consists of a dense positive nucleus with electrons moving round this nucleus as planets move round the sun. He likened his model to the solar system. The nucleus is at the center of this system just as the sun is at the center of the solar system.
There are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated by multiplying the molarity by the volume.
No. of moles = Molarity × volume
According to this question, 3L of a KBr solution are contained in a 0.4M.
no. of moles = 3L × 0.4M = 1.2moles
Therefore, there are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
Learn more about no. of moles at: brainly.com/question/14919968
The monochloroderivatives will be obtained by substituting chemically non equivalent hydrogen with chlorine atom, one by one
So the possible monochloro derivatives of 2,4-dimethylpentane (figure 1) are shown in figure (2)
Answer:
Explanation:
From the statement of the problem,
B₂S₃
+ H₂O
→ H₃BO₃
+ H₂S
B₂S₃ + H₂O → H₃BO₃ + H₂S
We that the above expression does not conform with the law of conservation of mass:
To obey the law, we need to derive a balanced reaction equation:
Let us use the mathematical method to obtain a balanced equation.
let the balanced equation be:
aB₂S₃ + bH₂O → cH₃BO₃ + dH₂S
where a, b, c and d will make the equation balanced.
Conservating B: 2a = c
S: 3a = d
H: 2b = 3c + 2d
O: b = 3c
if a = 1,
c = 2,
b = 6,
2d = 2(6) - 3(2) = 6, d = 3
Now we can input this into our equation:
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
B₂S₃
+ 6H₂O
→ 2H₃BO₃
+ 3H₂S