A is Ea, which stands for activating energy. Energy is needed to get the reaction underway and Ea is the energy needed to “start” the reaction.
B is the temperature either released or absorbed.
The diagram shows that the reaction is exothermic based on the fact that the products energy is lower than the reactants. That is because energy (which is temperature in this case) is released during the process. If the reactants would have been lower than the products, the reaction would be endothermic.
The molar mass of the unknown compound is calculated as follows
let the unknown gas be represented by letter Y
Rate of C2F4/ rate of Y = sqrt of molar mass of gas Y/ molar mass of C2F4
= (4.6 x10^-6/ 5.8 x10^-6) = sqrt of Y/ 100
remove the square root sign by squaring in both side
(4.6 x 10^-6 / 5.8 x10^-6)^2 = Y/100
= 0.629 =Y/100
multiply both side by 100
Y= 62.9 is the molar mass of unknown gas
Answer:
0.13 g
Explanation:
mass of aluminum required = ( Dislocation length) / ( Dislocation density) × (density of metal)
3000 miles to cm ( 1 mile = 160934 cm) = 3000 miles × 160934 cm / 1 mile = 482802000 cm
density of Aluminium = 2.7 g /cm³
dislocation density of aluminum = 10¹⁰ cm³
mass of aluminum required = (482802000 cm × 2.7 g/cm³) / 10¹⁰ cm³ = 0.13 g
Answer:
we know that it was the vinegar and baking soda because gas had been created, the gas was held within the bubbles. the gas that was created was called Carbon Dioxide or CO2
Answer:
a, b
Explanation:
Electrolytes dissociate to make ions, because of it they conduct electricity.