7.55 x 6.02 x 10²³ = 4.55 x 10²⁴ atoms
The answer is the reaction ins a cold pack
<span>the atomic mass of nitrogen is 14. There is 1 nitrogen atom in the molecule so the percentage of N is :
14/35 x100% = 40%</span>
Answer:
6.31g/mol
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Mole (n) = mass (m)/molar mass (Mm)
* Mm = m/n
Also, density (p) = mass (m) ÷ volume (V)
PV = nRT
Since n = M/Mm
PV = M/Mm. RT
PV × Mm = m × RT
Divide both sides by V
P × Mm = m/V × RT
Since p = m/V
P × Mm = p × RT
Mm = p × RT/P
Mm = 0.249 × 0.0821 × 293/0.95
Mm = 5.989 ÷ 0.95
Mm = 6.31g/mol
Lets find the electronegativity difference between the bonded atoms;
C-H = 2.6-2.2 = 0.4
C-F = 4.0-2.6 = 1.4
F-F = 4.0-4.0 = 0
H-O = 3.4-2.2 = 1.2
Here the electronegativity difference is highest for C-F bond hence C-F bond is most polar.