Force = Mass * Acceleration therefore the red ball with the higher mass will have more force and greater acceleration
Answer:
<h2>17.1 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
3800 g = 3.8 kg
We have
force = 3.8 × 4.5
We have the final answer as
<h3>17.1 N</h3>
Hope this helps you
Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Answer:
9.34 N
Explanation:
First of all, we can calculate the speed of the wave in the string. This is given by the wave equation:

where
f is the frequency of the wave
is the wavelength
For the waves in this string we have:
, since it completes 625 cycles per second
is the wavelength
So the speed of the wave is

The speed of the waves in a string is related to the tension in the string by
(1)
where
T is the tension in the string
is the linear density
In this problem:
is the mass of the string
L = 0.75 m is the its length
Solving the equation (1) for T, we find the tension:

Bending occurs when one side of the wave enters the new medium before the other side of the wave. ... The bending occurs because the two sides of the wave are traveling at different speeds.