Answer:
Planetesimals (Ex, Mercury, Venus , Mars & Earth)
Explanation:
They are known as Planetesimals , They are small in size and have rocky surface. The examples of Planetesimals are Mercury, Venus Mars and Earth.
They are small early planets , which also has gravitational attraction.
Thanks
Answer: the contents of this container weighs 4905 kg.m/s²
Explanation:
Given that;
volume of a container V = 0.5 m³
we know that standard gravitational acceleration g = 9.81 m/s²
specific volume of liquid filled in the container v = 0.001 m³/kg
now we express the equation for weight of the container.
W = mg
W = (pV)g
W = Vg / ν
so we substitute
W = (0.5 m³)(9.81 m/s ) / 0.001 m³/kg
W = 4.905 / 0.001
W = 4905 kg.m/s²
Therefore, the contents of this container weighs 4905 kg.m/s²
Answer:
Densidad de la placa = 20 g/cm³.
La placa no es de oro.
Explanation:
Para encontrar la densidad de la placa rectangular primero debemos hallar su volumen:
Ahora, encontremos al densidad de la placa:

Dado que la densidad del oro es 19.32 g/cm³ y que la densidad de la placa rectangular calculada es 20 g/cm³, podemos decir que dicha placa no es de oro.
Espero que te sea de utilidad!
Answers:
No, They will attract each other, B, and neither direction
Explanation:
Since the two already presented particles in the diagram represent both opposing charges due to the direction of the arrows (the arrows facing away from the particle shows a positive charge and the particles facing towards the particle show a negative charge), not only because of this but as the arrows between the particles show an attracting magnetic field, then it can be concluded that the particles will attract to each other and if another particle was introduced into the diagram of a positive charge, then it would attract to the negatively charged particle. If you have any questions or need further explanation, please comment below. E2021, have a great day.
Explanation:
a. The velocity of the wind as a vector in component form will be represented as v vector:

b.The velocity of the jet relative to the air as a vector in component form will be represented as u vector

c. The true velocity of the jet as a vector will be represented as w:


d. The true speed of the jet will be calculated as:




e. The direction of the jet will be:


