Answer:
There is at least one instant which instantaneous acceleration is equal to average acceleration.
.
Explanation:
The average acceleration experimented by the car is:


According to the Rolle's Theorem, there is at least one instant t so that instantaneous acceleration equal to average acceleration for the analyzed interval. That is to say:

If car is accelerating at constant rate, instantaneous acceleration coincides with average acceleration for all instant t. Then, instantaneous acceleration is:

Answer:
that initially the weather vane was at rest, by this load that remained on the pole it would begin to move.
Explanation:
Let us carefully analyze the situation, when the bar is facing the index post a load of equal magnitude, but opposite sign on its surface, these two charges are in balance; When the hand touches the pole, it creates a path to the ground where the charges that were induced on the pole can be balanced with the charge coming from the ground, leaving a zero charge on the pole.
Now if the hand is removed, there can be no exchange of charges with the earth. When the bar is removed, the induced loads are redistributed in the post, but the excess loads that came from the earth that have the same value and are of a sign opposite to the induced ones remain, you want to sign that they are of the same sign as the charges of the bar.
In summary, after the process, the post has a load of equal magnitude and sign (negative) that of the bar.
If we assume that initially the weather vane was at rest, by this load that remained on the pole it would begin to move.
It is not advisable to turn off the ignition while it is
moving, so it is a no. Why? Even though the vehicle has steering wheel lock,
turning off the ignition while it is moving is not advisable because it causes
the vehicle to lose out of control, leading to complications and accidents.
The average force on the ball by the racket is 98 N. The correct option is the third option - 98 N
From the question, we are to determine the average force on the ball by the racket.
From the formula,

Where F is the force
m is the mass
v is the velocity
and t is the time
From the given information
m = 0.07 kg
v = 56 m/s
t = 0.04 s
Putting the parameters into the formula,
we get


F = 98 N
Hence, the average force on the ball by the racket is 98 N. The correct option is the third option - 98 N
Learn more on calculating force exerted on an object here: brainly.com/question/13590154