Answer:
C. The car from driving off the road on a curve
Explanation:
A centripetal force actually causes circular motion. This occurs when an object moves in a circular path or a circle,a force will definitely act on it.
For instance, a car travelling in a circular path must definitely experience this force acting on it, even when the car moves at a constant speed. If it does not exist the object will definitely spin off in a direction tangential to the circular path or curve.
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.
Answer:
a = 8.06 m/s²
Explanation:
The acceleration of this car can be found using the first equation of motion:

where,
a = acceleration = ?
vf = final speed = 26.8 m/s
vi = initial speed = 0 m/s
t = time = 3.323 s
Therefore,

<u>a = 8.06 m/s²</u>
a closed system does not allow matter or energy to pass through