If you want to change the thermos into an open energy system, you have to remove the lid. Once the lid is removed, the energy is no longer contained inside the thermos bottle. From the bottle, the energy dissipates to the environment.
Answer:
a) 1.6*10^21 Joules.
b) 40,000
Explanation:
part a )
maximum destructive energy that can be released is the case when all the kinetic energy of the asteroid is consumed.
therefore E = 1/2 m v^2
m= density * volume
= 3100* (4/3* pi * 1000^3 ) = 12978666666666.67 kg
given v = 16000m/s
therefore
E= 1/2 * 12978666666666.67 * 16000 * 16000
= 1.6 x 10^21 Joules!
part B)
each bomb is capable of 4 x 10^16 joules
therefore no of bombs that are needed to produce the required energy are
1.6 x 10^21 / 4 x 10^16 = 40,000
that is 40,000 such nuclear bombs are required!
I would say a because that is the only one that makes sense but I’m not 100% sure
Answer:
10.2 atm
Explanation:
Use ideal gas law:
PV = nRT
Initial number of moles is:
(2.20 atm) (0.859 L) = n (0.0821 atm L / mol / K) (565 K)
n = 0.0407 mol
At the new volume and temperature, the pressure is:
P (0.268 L) = (0.0407 mol) (0.0821 atm L / mol / K) (815 K)
P = 10.2 atm
Here, Your answer would be option D) Voltage Source.
Charge flows from it in a particular direction, and a charge ( static or dynamic ) creates an electric field around it (can be experimentally observed by a test charge), whereas all the other options are appliances which needs current ( rate of flow of charge ) to work.
In short, Your correct Answer would be Option D)-Voltage Source.
Hope this helps!