Answer:
Explanation:
The fundamental charge of a single electron is
.
If there are 10 excess electrons, the net charge that would be measured should be 10 times the fundamental charge of a single electron:

Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
Hey there!
Seems like you're looking for the size and direction to the final velocity of the two cars. To find it, you must solve it like this.
0.4 kg(3 m/s) + 0.8kg(–2 m/s) = 1.2 kg m/s -1.6 kg m/s = –0.4 kg m/s
–0.4 kg m/s = 1.2 kg(v) = (–0.4 kg m/s)/(1.2 kg) = v = –0.33 m/s
So, the cars are traveling at -0.33 m/s in the direction of the second car.
Hope this helps
<em>Tobey</em>
Answer:

Explanation:
Given, for girl : Weight or force;

Area of both heels;


For elephant, Weight = Force
= 2000 kg•f
Area of 4 feet;


Now;



Thus, the girl's pointed heel sandals exert 12.5 times more pressure P than the pressure P exerted by the elephant.
I aspire this helps!