1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nastasia [14]
3 years ago
8

) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note tha

t is sung. If someone sings the note B flat, which has a frequency of 466 Hz, how much time does it take the person’s vocal cords to vibrate through one complete cycle, and what is the angular frequency of the cords? (b) Hearing. When sound waves strike the eardrum, this membrane vibrates with the same frequency as the sound. The highest pitch that young humans can hear has a period of 50.0 ms. What are the frequency and angular frequency of the vibrating eardrum for this sound? (c) Vision. When light having vibrations with angular frequency ranging from 2.7 * 1015 rad>s to 4.7 * 1015 rad>s strikes the retina of the eye, it stimulates the receptor cells there and is perceived as visible light. What are the limits of the period and frequency of this light? (d) Ultrasound. High-frequency sound waves (ultrasound) are used to probe the interior of the body, much as x rays do. To detect small objects such as tumors, a frequency of around 5.0 MHz is used. What are the period and angular frequency of the molecular vibrations caused by this pulse of sound?
Physics
1 answer:
vaieri [72.5K]3 years ago
7 0

(a) 0.0021 s, 2926.5 rad/s

The frequency of the B note is

f= 466 Hz

The time taken to make one complete cycle is equal to the period of the wave, which is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{466 Hz}=0.0021 s

The angular frequency instead is given by

\omega = 2\pi f

And substituting

f = 466 Hz

We find

\omega = 2\pi (466 Hz)=2926.5 rad/s

(b) 20 Hz, 125.6 rad/s

In this case, the period of the sound wave is

T = 50.0 ms = 0.050 s

So the frequency is equal to the reciprocal of the period:

f=\frac{1}{T}=\frac{1}{0.050 s}=20 Hz

While the angular frequency is given by:

\omega = 2\pi f = 2 \pi (20 Hz)=125.6 rad/s

(c) 4.30\cdot 10^{14} Hz, 7.48\cdot 1^{14} Hz, 2.33\cdot 10^{-15} s, 1.34\cdot 10^{-15}s

The minimum angular frequency of the light wave is

\omega_1 = 2.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{2.7\cdot 10^{15}rad/s}{2\pi}=4.30\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{4.30\cdot 10^{14}Hz}=2.33\cdot 10^{-15}s

The maximum angular frequency of the light wave is

\omega_2 = 4.7\cdot 10^{15}rad/s

so the corresponding frequency is

f=\frac{\omega}{2 \pi}=\frac{4.7\cdot 10^{15}rad/s}{2\pi}=7.48\cdot 10^{14} Hz

and the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{7.48\cdot 10^{14}Hz}=1.34\cdot 10^{-15}s

(d) 2.0\cdot 10^{-7}s, 3.14\cdot 10^{7} rad/s

In this case, the frequency is

f=5.0 MHz = 5.0 \cdot 10^6 Hz

So the period in this case is

T=\frac{1}{f}=\frac{1}{5.0\cdot 10^6  Hz}=2.0 \cdot 10^{-7} s

While the angular frequency is given by

\omega = 2\pi f=2 \pi (5.0\cdot 10^{6}Hz)=3.14\cdot 10^{7} rad/s

You might be interested in
A motorcycle of mass 100 kilograms travels around a flat, circular track of radius 10 meters with a constant speed of 20 meters
JulijaS [17]

Answer:

100/10 = 10 , 10 × 10 = 100÷20 = 5

I'm pretty sure its wrong

8 0
3 years ago
Read 2 more answers
A 1750kg bumpercar moving at 1.50m/s to the right collides elastically with a 1450kg car going to the left at 1.10m/s. The 1750k
damaskus [11]
1984.08 kg that’s the answer
6 0
3 years ago
greater than: The electric potential energy of a proton at point A is _____ the electric potential energy of an proton at point
mestny [16]

Answer:

[similar to]

Explanation:

it is the missing word

3 0
3 years ago
Which domain bacteria involved in making sourdough bread belong to
lidiya [134]
A). Archaea Hope it helps you
6 0
3 years ago
Read 2 more answers
The inductor in a radio receiver carries a current of amplitude 200 mA when a voltage of amplitude 2.4 V is across it at a frequ
zzz [600]

Answer:

The value of the inductance is 1.364 mH.

Explanation:

Given;

amplitude current, I₀ = 200 mA = 0.2 A

amplitude voltage, V₀ = 2.4 V

frequency of the wave, f = 1400 Hz

The inductive reactance is calculated;

X_l = \frac{V_o}{I_o} \\\\X_l = \frac{2.4}{0.2} \\\\X_l =12 \ ohms

The inductive reactance is calculated as;

X_l = \omega L\\\\X_l = 2\pi fL\\\\L = \frac{X_l}{2 \pi f}

where;

L is the inductance

L = \frac{12}{2 \pi \times \ 1400} \\\\L = 1.364 \times \ 10^{-3} \ H\\\\L = 1.364 \ mH

Therefore, the value of the inductance is 1.364 mH.

7 0
3 years ago
Other questions:
  • When the fulcrum is shifted to the right, which side has a mechanical advantage and which side has a mechanical disadvantage?
    11·1 answer
  • A cube has sides of 11.4 cm. What is its volume? 1,482 cm3 130 cm3 1,443 cm3 34.2 cm3
    10·1 answer
  • 50 J of work was performed in 20 seconds. How much power was used to perform this task? A. 0.4 W B. 2.5 W C. 4 W D. 24.5 W
    8·1 answer
  • How many layers of data can a DVD store?<br> 3<br> 2<br> 4<br> 1<br> 1
    9·1 answer
  • .An 850 turn solenoid with a diameter of 7.0cm is 21 cm long with 42A of current.A long straight wire cuts through the center of
    12·1 answer
  • Assume that a clay model of a lion has a mass of 0.225 kg and travels on the ice at a speed of 0.85 m/s. It hits another clay mo
    8·1 answer
  • If a negatively charged particle enters a region of uniform magnetic field which is perpendicular to the particle's velocity, wi
    11·1 answer
  • An 85 kg man and his 35 kg daughter are sitting on opposite ends of a 3.00 m see-saw. The see-saw is anchored in the center. If
    15·1 answer
  • A car speeds up from 3 m/s to 10 m/s in 8 s. How far does the car travel while doing this? 2. A
    7·1 answer
  • A football player kicks a field goal from a distance of 45 m from the goalpost. The football is launched at a 35° angle above th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!