(I posted the picture for a ray diagram and the first law of reflection.) The rays show the first law of reflection since everything gets reflected. Look at the picture for more:
Answer: The general formulae for moles is n=m/mr so now we have being given to find the mass so all we have to do is to change subject
Explanation: so we have to change subject in this question to m= n× mr . so in the question below we have being given the mole as 1.5mol/dm³ so all we have to do is to find the molecular relative mass(mr) .
to find the molecular relative mass of sodium hydroxide (NAOH) we add all of the atomic masses of all the atoms present so here we have sodium oxygen and hydrogen atoms present.
NA=23 O=16 H=1 so we add 23+16+1=40 so 40 is our molecular relative mass
now we fix it in our formulae which is m=n× mr
m=1.5× 40 =60 so our mass is 60grams or 60g
HOPE THIS HELPS!!!! if i made a mistake our MAY answer may be wrong feel free to comment
Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Answer:
46
Explanation:
Sodium metal has a molar mass of
22.99