Answer:
Step-by-step explanation:
Hello!
For me, the first step to any statistics exercise is to determine what is the variable of interest and it's distribution.
In this example the variable is:
X: height of a college student. (cm)
There is no information about the variable distribution. To estimate the population mean you need a variable with at least a normal distribution since the mean is a parameter of it.
The option you have is to apply the Central Limit Theorem.
The central limit theorem states that if you have a population with probability function f(X;μ,δ²) from which a random sample of size n is selected. Then the distribution of the sample mean tends to the normal distribution with mean μ and variance δ²/n when the sample size tends to infinity.
As a rule, a sample of size greater than or equal to 30 is considered sufficient to apply the theorem and use the approximation.
The sample size in this exercise is n=50 so we can apply the theorem and approximate the distribution of the sample mean to normal:
X[bar]~~N(μ;σ2/n)
Thanks to this approximation you can use an approximation of the standard normal to calculate the confidence interval:
98% CI
1 - α: 0.98
⇒α: 0.02
α/2: 0.01

X[bar] ± 
174.5 ± 
[172.22; 176.78]
With a confidence level of 98%, you'd expect that the true average height of college students will be contained in the interval [172.22; 176.78].
I hope it helps!
Answer:
Step-by-step explanation:
5:13 p.m
Answer:
Step-by-step explanation:
we know that
The compound interest formula is equal to
where
A is the total amount owed
P is the amount of money borrowed
r is the rate of interest in decimal
t is Number of Time Periods
n is the number of times interest is compounded per year
in this problem we have
substitute in the formula above
Remember the formula for calculating volume is: Volume = Area by height. V = A X h.
For a triangle the area is calculated using the formula: Area = half of base by altitude. A = 0.5 X b X a.
So to calculate the volume of a triangular prism, the formula is: V = 0.5 X b X a X h