Answer:
The answer to your question is given below.
Explanation:
Potassium (K) has 19 electrons with electronic configuration of 2, 8, 8, 1.
Fluorine (F) has 9 electrons with electronic configuration of 2, 7.
Fluorine needs 1 electron to complete it's octet configuration.
Hence, potassium (K), will lose 1 electron to fluorine (F) to form potassium ion (K+) with electronic configuration of 2, 8, 8. The fluorine atom (F) will receive the 1 electron from potassium to form the fluoride ion (F-) with electronic configuration of 2, 8.
**** Please see attached photo for further details.
Answer:
<em>YOU</em> use <em>YOUR OWN WORDS</em>
Explanation:
Have a good day! :)
The reactants are all the formulas to the left of the arrow, which are:
hcI(aq) nahco3(aq)
<span>Use the Ideal law Equation :
P.V= n.R.T
V = 0.5 L
P = 1.0 atm
</span><span>R= 0.0821 L*atm/mol*K
</span>
<span>n = R*T/P*V
</span><span>P*V= n*R*T
</span>
1.0 * 0.5 = n *<span>0.0821*298
0,5 = n* 24.4658
n = 0,5 / 24.4658
n =0.0204 moles
</span>
Answer:
Explanation:
<u>1) Data:</u>
a) M = ?
b) mass of solue = 17 g
c) solute: NH₃
d) V = 0.5o liter
<u>2) Formulae:</u>
a) number of moles, n = mass in grams / molar mass
b) M = n / V (in liters)
<u>3) Solution</u>
a) Molar mass of NH₃ = 17.03 g/mol
b) n = mass in grams / molar mass = 17 g / 17.03 g/mol = 0.998 mol NH₃
c) M = n / V (in liters) = 0.998 mol / 0.50 liter = 1.996 M
d) Round to the appropiate number of significant figures, 2: 2.0 M.
Answer: 2.0 M