1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alja [10]
3 years ago
14

A student designs an electromagnet, as shown in the picture. The electromagnet is only able to pick up 1 paper clip. List 2 modi

fications he could make to his electromagnet in order to enable it to pick up more paper clips.

Physics
1 answer:
Lerok [7]3 years ago
6 0

-- Change the battery to one with higher voltage.

-- Wrap more turns of wire around the spike.

-- If the spike is made of anything else but iron, replace it with a pure iron one.

You might be interested in
A periodic wave with wavelength 2m has a speed of 4m/s. What is the waves frequency?.
Gekata [30.6K]

The wave frequency is 2 Hz.

What is wave frequency ?

The number of waves that pass through a fixed point in a given amount of time is referred to as the wave frequency. The hertz is the SI unit for wave frequency (Hz).

f = v / w

where,

f = frequency\\v = speed \\w = wavelength

Given,

v = 4 m/s, w = 2 m

f = 4/2 \\f = 2 Hz\\

The waves frequency is 2 Hz.

To know more about wave frequency,check out:

brainly.com/question/15830195

#SPJ4

5 0
1 year ago
In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball m
ikadub [295]

(a) -39.4^{\circ}

Let's take the initial direction (before the collision) of the cue ball has positive x-direction.

Along the y-direction, the total initial momentum is zero:

p_y =0

Therefore, since the total momentum must be conserved, it must be zero also after the collision. So we write:

0 = m v_1 sin \phi_1 + m v_2 sin \phi_2 \\0 = m(4.60) sin (28^{\circ}) + m(3.40) sin \phi_2

where

m is the mass of each ball

v_1= 4.60 m/s is the velocity of the cue ball after the collision

v_2 = 3.40 m/s is the velocity of the second ball after the collision

\phi_1=28.0^{\circ} is the angle of the cue ball with the x-axis

\phi_2 is the angle of the second ball

Solving for \phi_2, we find the angle between the direction of motion of the second ball and the original direction of motion:

sin \phi_2 = -\frac{4.60 sin 28}{3.40}=-0.635\\\phi_2 = -39.4^{\circ}

(b) 6.69 m/s

To find the original speed of the cue ball, we analyze the situation along the horizontal direction.

First, we calculate the total momentum along the x-direction after the collision, which is:

p_x = m v_1 cos \phi_1 + m v_2 cos \phi_2 \\0 = m(4.60) cos (28^{\circ}) + m(3.40) cos (-39.4^{\circ})=6.69 m

The initial total momentum along the x-direction as

p_x = m u

where

m is the mass of the cue ball

u is the initial velocity of the cue ball

The momentum along this direction must be conserved, so we can equate the two expressions and find the value of u:

mu = 6.69 m\\u = 6.69 m/s

7 0
3 years ago
When an object oscillating in simple harmonic motion is at its maximum displacement from the equilibrium position, which of the
ziro4ka [17]

Answer:

E. Zero Maximum

Explanation:

At the point of maximum displacement, the speed is zero while the restoring force is maximum. In fact:

- The restoring force is given by F=kx, where k is the spring constant and x is the displacement - at the point of maximum displacement, x is maximum, so F is maximum as well

- the total energy of the system is sum of kinetic energy and elastic potential energy:

E=K+U=\frac{1}{2}mv^2+\frac{1}{2}kx^2

where m is the mass of the system and v is the speed. Since E (the total energy) is constant due to the law of conservation of energy, we have that when K increases, U decreases, and viceversa. As a result, when x increases, v decreases, and viceversa. At the point of maximum displacement, x is maximum, so v will have its minimum value (which is zero, since the system is changing direction of motion).

4 0
3 years ago
What is the momentum of a vehicle that has a mass of 800 kg and is moving at a velocity of 5 m/s
yarga [219]

Answer:

4000 kg.m/s

Explanation:

p=mv

m=800 kg

v=5 m/s

p=(800)(5)= 4000 kg.m/s

3 0
3 years ago
A mass on a string is swung in a circle of radius 0.75m at 7.0m/s.what its rate of acceleration.​
Ulleksa [173]

Explanation:

ac = v^2/r

= (7.0 m/s)^2/(0.75 m)

= 65 m/s^2

3 0
3 years ago
Other questions:
  • What is a partial and total lunar eclipse?
    11·1 answer
  • Why are galaxies visible
    10·1 answer
  • PLEASE HELP FAST WILL GIVE BRAINLIEST The sentence, "The popcorn kernels popped twice as fast as the last batch," is a(n) _____.
    9·1 answer
  • The focal point of a concave mirror is _____ the mirror. ( in front of; behind)
    9·2 answers
  • In the oscillating spring ball system, where is the velocity of the ball the greatest?
    9·1 answer
  • What are parts of a pulley
    5·1 answer
  • show all work. a bus travels 100km/hr. it takes 6 hours to get from seattle to portland. how far away are the two cities?
    12·2 answers
  • The term for the bacterium that causes tuberculosis​
    12·1 answer
  • The info below shows three kettles with their powers and the time they take to boil 500cm3 of water. If electricity costs 9p per
    7·1 answer
  • Explain why aircraft are carefully designed so that parts do not resonate.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!