Answer:
The velocity of the leaf relative to the jogger is 5 m/s.
Explanation:
Given that,
Velocity of jogger wrt to the ground, 
velocity of leaf wrt the ground, 
We need to find the velocity of the leaf relative to the jogger. Let it is equal to V. So, it is given by :

So, the velocity of the leaf relative to the jogger is 5 m/s. Hence, this is the required solution.
Answer:

Explanation:
For this case we have the following info given:
Number of Na+ ions 
Each ion have a charge of +e and the crage of the electron is 
The time is given
if we convert this into seconds we got:

Now we can use the following formula given from the current passing thourhg a meter of nerve axon given by:

Where N represent the number of ions, e the charge of the electron and Q the total charge
If we replace on this case we have this:

And from the general definition of current we know that:

And since we know the total charge Q and the time we can replace:

The current during the inflow charge in the meter axon for this case is 
All of Dina's potential energy Ep is converted into kinetic energy Ek so Ep=Ek, where Ep=m*g*h and Ek=(1/2)*m*v². m is the mass of Dina, h is the height of ski slope, g=9.8 m/s² and v is the maximal velocity.
So we solve for v:
m*g*h=(1/2)*m*v², masses cancel out,
g*h=(1/2)*v², we multiply by 2,
2*g*h=v² and take the square root to get v
√(2*g*h)=v, we plug in the numbers and get:
v=9.9 m/s.
So Dina's maximum velocity on the bottom of the ski slope is v=9.9 m/s.
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
Necrosis - the death of most or all of the cells in an organ or tissue due to disease, injury, or failure of the blood supply.
Hope this helps, please mark me brainliest