Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀
Answer:
We see objects in a dark room due to the emission of light photons which are sensitive to our eyes. Darkness is simply a terminology used to describe the absence of light. Visible light to human is a component of the electromagnetic spectrum. Our eyes have receptors that picks the photons which light releases
Explanation:
Answer:
2.83 m
Explanation:
The relationship between frequency and wavelength for an electromagnetic wave is given by

where
is the wavelength
is the speed of light
is the frequency
For the FM radio waves in this problem, we have:
is the minimum frequency, so the maximum wavelength is

The maximum frequency is instead

Therefore, the minimum wavelength is

So, the wavelength at the beginning of the range is 2.83 m.
An ignious rock's color is mainly determined by its silica content
Answer:
840000 J/min
Explanation:
Area = A = 0.1 m²
Bottom of pot temperature = 200 °C
Thermal conductivity = k = 14 J/sm°C
Thickness = L = 1 cm = 0.01 m
Temperature of boiling water = 100 °C
From the law of heat conduction
Q = kAΔT/L
⇒ Q = 14×0.1×(200-100)/0.01
⇒ Q = 14000 J/s
Converting to J/minute
Q = 14000×60 = 840000 J/min
∴ Heat being conducted through the pot is 840000 J/min