Answer:
83°C
Explanation:
The following were obtained from the question:
M = 40g
C = 4.2J/g°C
T1 = 91°C
T2 =?
Q = 1300J
Q = MCΔT
ΔT = Q/CM
ΔT = 1300/(4.2x40)
ΔT = 8°C
But ΔT = T1 — T2 (since the reaction involves cooling)
ΔT = T1 — T2
8 = 91 — T2
Collect like terms
8 — 91 = —T2
— 83 = —T2
Multiply through by —1
T2 = 83°C
The final temperature is 83°C
Answer:
i would say C
Explanation:
You can only make a model of something if the real thing already exists.
a. True.
There is always an equilibrium of the type
NH₃⁺CHRCOOH ⇌ NH₃⁺CHRCOO⁻ ⇌ NH₂CHRCOO⁻
The compound is <em>always in an ionized form</em>.
There are no unionized NH₂CHRCOOH molecules in the solution.
Answer:
A. Is independent of other energy influences
Explanation:
Nuclear decay occurs at a constant rate. The rate of decay is independent of temperature.
B, C, and D are wrong. The decay rate cannot be sped up or slowed down at ordinary temperatures.