Answer:
It's used to indicate pressure
There is no "why", because that's not what happens. The truth is
exactly the opposite.
Whatever the weight of a solid object is in air, that weight will appear
to be LESS when the object is immersed in water.
The object is lifted by a force equal to the weight of the fluid it displaces.
It displaces the same amount of air or water, and any amount of water
weighs more than the same amount of air. So the force that lifts the
object in water is greater than the force that lifts it in air, and the object
appears to weigh less in the water.
Answer:
These regions are known as compressions and rarefactions respectively. The compressions are regions of high air pressure while the rarefactions are regions of low air pressure.
Explanation:
Work needed: 720 J
Explanation:
The work needed to stretch a spring is equal to the elastic potential energy stored in the spring when it is stretched, which is given by

where
k is the spring constant
x is the stretching of the spring from the equilibrium position
In this problem, we have
E = 90 J (work done to stretch the spring)
x = 0.2 m (stretching)
Therefore, the spring constant is

Now we can find what is the work done to stretch the spring by an additional 0.4 m, that means to a total displacement of
x = 0.2 + 0.4 = 0.6 m
Substituting,

Therefore, the additional work needed is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
448 meters
Explanation:
every second it moves 8 meters, so all you have to do is multiply 56x8 or 8x56 either way it is the same thing and you will get the same answer