Answer:
Melting butter
Explanation:
You can reverse the change of butter back to its original state but you can never reverse the rest back to there original state
Answer:
Water's unique density, high specific heat, cohesion, adhesion, and solvent abilities allow it to support life.
Explanation:
Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m
The highest concentration of hydrogen ion (H+) is located in the intermembrane space. The intermembrane space is the space between inner membrane and the outer membrane of the mitochondrion or chloroplast. THe main function of intermembrane is oxidative phosphorylation.