The sound waves travel because of the pitch of the note so the window rattles.
-- Find a clean jar that has a tight lid.
-- Take the lid off of the jar.
-- Wave the jar around for a while.
-- Put the lid back on the jar, tightly.
You now have a jar full of air and everything in the air.
You can take it into your laboratory and have your way with it.
Answer:
On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

This means that the relation between the wavelength and the length of the string is

By definition, this standing wave is at the third harmonic, n = 3.
Furthermore, the standing wave equation is as follows:

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.


For this equation to be equal to zero, sin(59.94t) = 0. So,

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:

Answer:
El neumático soportará una presión de 1.7 atm.
Explanation:
Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

En donde:
P: es la presión
V: es el volumen
n: es el número de moles del gas
R: es la constante de gases ideales
T: es la temperatura
Cuando el neumático soporta la presión inicial tenemos:
P₁ = 1.5 atm
T₁ = 300 K
(1)
La presión cuando T = 67 °C es:
(2)
Dado que V₁ = V₂ (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:
Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.
Espero que te sea de utilidad!
A sphere is charged with electrons to −9 × 10−6 C. The value given is the total charge of all the electrons present in the sphere. To calculate the number of electrons in the sphere, we divide the the total charge with the charge of one electron.
N = 9 × 10−6 C / 1.6 × 10−19 C
N = 5.6 x 10^13