The final answer is -322, 320 Joules. The solution for the problem is:
The equation that must be used in this problem is:
U = mCp(Tf-Ti)
where:
U = energy released or absorbed in Joules
m = mass in kg
Cp = specific heat of material in J/kg-C
Tf = final temperature, C
Ti = initial temperature, C
Looking up the Cp of granite gives a value of 790 J/kg-C.
U = 17kg (790 J/kg-C) (21-45)
<span>U = - 322, 320 Joules (negative means heat is released)</span>
Answer: Planting a tree belt.
Explanation:
The most effective method by which the desertification of the soil can be controlled is by planting more and more trees.
The process of desertification occurs when there is a loss of vegetation, water bodies and animals from a particular area. Loss of trees makes the area look like desert.
So, planting trees along with some irrigation will help to cope with problem.
Answer:
0.124 m
Explanation:
the period of a simple pendulum with a small amplitude is given as
T = 2π [√(I/mgd)]
From the above stated formula,
I = moment of inertia
m = mass of the pendulum
g = acceleration due to gravity, 9.8 m/s²
d = distance from rotation axis due to center of gravity
Also, moment of Inertia, I = 2mr², if we substitute this in the above formula, we have
T = 2π [√(2mr²/mgd)]
If we assume that our r = d, then we have
T = 2π [√(2r/g)]
If we make r the subject of the formula in the above equation, we get
r = gT² / 8π²
r = (9.8 * 1²) / 8 * π²
r = 9.8 / 78.98
r = 0.124 m
Thus, the radius of the hoop is 0.124 m
C. has to be right, also its the only one that makes sense.
Hope this helps!