2,450 miles. you have to do 700•3.5= 2,450
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
Answer:
The source is at a distance of 4.56 m from the first point.
Solution:
As per the question:
Separation distance between the points, d = 11.0 m
Sound level at the first point, L = 66.40 dB
Sound level at the second point, L'= 55.74 dB
Now,

where

I = Intensity of sound
Now,

Similarly,

Now,




Solving the above quadratic eqn, we get:
R = 4.56 m
Answer: When the fluid cools, the kinetic energy of the molecules decreases. this causes the molecules to slow down and move closer together, the density of the fluid increases and the fluid sinks
Explanation: Just took the test & it gave the answer or sample response.