They both release greenhouse gases, I think
Answer : The final energy of the system if the initial energy was 2000 J is, 3500 J
Solution :
(1) The equation used is,

where,
= final internal energy
= initial internal energy
q = heat energy
w = work done
(2) The known variables are, q, w and 
initial internal energy =
= 2000 J
heat energy = q = 1000 J
work done = w = 500 J
(3) Now plug the numbers into the equation, we get

(4) By solving the terms, we get




(5) Therefore, the final energy of the system if the initial energy was 2000 J is, 3500 J
The answer to this is easy once you look at the units for Joules. 1 Joule = 1 N.m (Newton.meter). The 'Newton' is the units of force that we are trying to find, and we know the meters is 2, from the question. So you have an 8Joule or 8N.m energy difference over 2 meters.
well if we know the meters, then the real question is written as:
8N.m = ?N x 2m
so just solve for N;
N = 8N.m / 2m = 4
So F = 4N
Answer:
option D
Explanation:
The correct answer is option D
When verifying Kirchhoff's law we measure current.
Kirchhoff's law deal with current and potential difference.
This law was first described by the German Scientist Gustav Kirchhoff.
Kirchhoff's law stated the current arriving at the node is equal to the current moving out of the node.
An object either remains at rest until acted upon