Answer:
u=36.8m/s
Explanation:
because of the acceleration is a constant acceleration we can use one of the "SUVAT" equations
u^2=v^2-2ā*s. where:
u^2 stands for intial velocity
v^2 stands for final velocity
since the cougar skidded to a complete stop the final velocity is zero.
u^2=v^2-2ā*s
u^2=(0)^2 -2(-2.87 m/s^2)*236 m
u^2=0+5.74m/s^2* 236m
u^2=1354.64m^2/s^2
u=√1354.64m^2/s^2
u=36.8m/s (approximate value)
when ever the acceleration is constant you can use one of the following equation to find the required value.
1. v = u + at. (no s)
2. s= 1/2(u+v)t. (no ā)
3. s=ut + 1/2at^2. ( no v)
4. v^2=u^2 + 2āS. (no t). 5. s= vt - 1/2at^2. (no u)
Answer:
Essentials. A battery is a device that stores chemical energy and converts it to electrical energy. The chemical reactions in a battery involve the flow of electrons from one material (electrode) to another, through an external circuit. The flow of electrons provides an electric current that can be used to do work.
Answer:
Explanation:
<u>Instant Velocity and Acceleration
</u>
Give the position of an object as a function of time y(x), the instant velocity can be obtained by

Where y'(x) is the first derivative of y respect to time x. The instant acceleration is given by

We are given the function for y

Note we have changed the last term to be quadratic, so the question has more sense.
The velocity is

And the acceleration is
