Answer:
The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Explanation:
Given that,
Mass = 2.15 kg
Distance = 0.0895 m
Amplitude = 0.0235 m
We need to calculate the spring constant
Using newton's second law

Where, f = restoring force


Put the value into the formula


We need to calculate the kinetic energy of the mass
Using formula of kinetic energy

Here, 

Here, 


Put the value into the formula


Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.
Answer:
10
Explanation:
i = 5/.5 = 10 Amps. Hope this helps :)
Search each one of them up on GOOGLE it’s easier trust me
<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
Answer:
f'=5.58kHz
Explanation:
This is an example of the Doppler effect, the formula is:

Where f is the actual frequency,
is the observed frequency,
is the velocity of the sound waves,
the velocity of the observer (which is negative if the observer is moving away from the source) and
the velocity of the source (which is negative if is moving towards the observer). For this problem:

