1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
6

A 100g block is initially compressing a spring 5.0 cm. The spring launches the block 50cm horizontally along the ground with a f

riction force of 15N. The block then slides up a frictionless ramp at 30 degrees reaching a 1.5m maximum height off the ground. What was the force constant of the spring
Physics
1 answer:
Setler [38]3 years ago
6 0

Answer:

7200 N/m

Explanation:

Metric unit conversion

100g = 0.1 kg

5 cm = 0.05 m

50 cm = 0.5 m

As the block is released from the spring and travelling to height h = 1.5m off the ground, the elastics energy is converted to work of friction force and the potential energy at 1.5 m off the ground

The work by friction force is the product of the force F = 15N itself and the distance s = 0.5 m

W_f = F_fs = 15*0.5 = 7.5 J

Let g = 10 m/s2. The change in potential energy can be calculated as the following:

E_p = mgh = 0.1*10*1.5 = 1.5 J

Therefore, as elastic energy is converted to potential energy and work of friction:

E_e = W_f + E_p

kx^2/2 = 7.5 + 1.5 = 9 J

k = 9*2/x^2 = 18/0.05^2 = 7200 N/m

You might be interested in
An ideal spring hangs from the ceiling. A 2.15 kg mass is hung from the spring, stretching the spring a distance d = 0.0895 m fr
Igoryamba

Answer:

The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.

Explanation:

Given that,

Mass = 2.15 kg

Distance = 0.0895 m

Amplitude = 0.0235 m

We need to calculate the spring constant

Using newton's second law

F= mg

Where, f = restoring force

kx=mg

k=\dfrac{mg}{x}

Put the value into the formula

k=\dfrac{2.15\times9.8}{0.0895}

k=235.41\ N/m

We need to calculate the kinetic energy of the mass

Using formula of kinetic energy

K.E=\dfrac{1}{2}mv^2

Here, v = A\omega

K.E=\dfrac{1}{2}m\times(A\omega)^2

Here, \omega=\sqrt{\dfrac{k}{m}}^2

K.E=\dfrac{1}{2}m\times A^2\sqrt{\dfrac{k}{m}}^2

K.E=\dfrac{1}{2}kA^2

Put the value into the formula

K.E=\dfrac{1}{2}\times235.41\times(0.0235)^2

K.E=0.06500\ J

Hence, The kinetic energy of the mass at the instant it passes back through the equilibrium position is 0.06500 J.

8 0
3 years ago
A charge of 5.0 coulombs moves through a circuit in 0.50 second. What is the current in the circuit
user100 [1]

Answer:

10

Explanation:

i = 5/.5 = 10 Amps.  Hope this helps :)

6 0
3 years ago
Help me pleaseeee I will give you 42 points!<br> (I am dumb so that’s why)
Anit [1.1K]
Search each one of them up on GOOGLE it’s easier trust me
7 0
3 years ago
Read 2 more answers
Physics. Need help. Brainlieast answer for most/ all of the answers answered
Mumz [18]

<u>ALL of the following work assumes NO AIR RESISTANCE:</u>

1). an object moving under the influence of only gravity, and not in orbit;  its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²

2). a parabola

3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.

4). a). the one that was thrown horizontally; b). both  hit the ground at the same time; c). both hit the ground with the same vertical velocity

5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion

6). a). 1.8 seconds;   b). 13.1 meters;   c). 17.6 m/s down;   d). 7.3 m/s; gravity has no effect on horizontal motion

7). 45 m/s

8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand

9). a). 4.49 m/s;  b). 29.7 m/s

10). 7.24 meters

11).  700 meters

12).  A). 103.7 meters ( ! she's in big trouble ! );     B).  17.5 meters

3 0
3 years ago
An airplane traveling at one third the speed of sound (i.e., 114 m/s) emits a sound of frequency 3.72 kHz. At what frequency doe
nlexa [21]

Answer:

f'=5.58kHz

Explanation:

This is an example of the Doppler effect, the formula is:

f'=\frac{(v+v_o)}{(v+v_s)}f

Where f is the actual frequency, f' is the observed frequency, v is the velocity of the sound waves, v_o the velocity of the observer (which is negative if the observer is moving away from the source)  and v_s the velocity of the source  (which is negative if is moving towards the observer). For this problem:

f=3.72kHz\\v=342m/s\\v_o=0m/s\\v_s=-114m/s

f'=\frac{(342+0)}{(342-114)}3.72\times10^3\\f'=\frac{342}{228}3.72\times10^3\\f'=(1.5)3.72\times10^3\\f'=5580Hz=5.58kHz

5 0
3 years ago
Other questions:
  • the amount of water returning to the earth through precipitation is blank the amount of water leaving the earth through evaporat
    6·1 answer
  • A friend is making vegetable soup. he add some salt to the simmering broth. the salt dissolves, and your friend says the broth s
    12·1 answer
  • A driver drives for 30.0 minutes at 80.0 km/h, then 45.0 minutes at 100 km/h. She then stops 30 minutes for lunch. She then trav
    12·1 answer
  • Was the significant digits convention indicative of your uncertainty in the measurements above
    14·1 answer
  • The dipole moment of HI is 0.42D. What is the dipole moment of HI in C⋅m?
    8·1 answer
  • What is the sound intensity level in decibels? Use the usual reference level of I0 = 1.0×10−12 W/m2.
    13·1 answer
  • Help me with this question please
    6·2 answers
  • A bird has a kinetic energy of 3 J and a potential energy of 25 J. What is the mechanical energy of the bird?
    11·1 answer
  • The amount of _____ that occurs when a sound wave encounters a barrier depends on the wave's wavelength.
    5·1 answer
  • Which graph represents a nonlinear relationship?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!