I would say Emotional health. Just because it is more sensable
Answer: B. II and III only
Explanation:
Let’s begin by explianing what energy is: the ability of matter to produce work in the form of movement, light, heat, among others. In this sense, there are several types of energy, but we will talk especifically in this case about <u>kinetic energy</u> and <u>potential energy</u>.
<u>Kinetic energy </u>is the energy an object or body has due to its movement and depends on the mass and velocity of the object or body.
To understande it better: If an object is at rest, its velocity is null and it does not have kinetic energy, however, if the object is moving, then it has kinetic energy.
On the other hand, <u>Potential energy</u> is known as <em>“stored energy”</em> that has the potential to be converted into energy of motion (kinetic energy) or another type of energy (thermal energy, for example). In addition, this energy is related to the work done when a certain force moves an object or body from its natural resting state along a distance to a new position.
So, according to this, Kinetic energy can be transformed into potential energy and Potential energy can be transformed into kinetic energy or any other type of energy. Hence, options II and III are correct.
The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
The other nation will get mad at the other nation and they could start a war
................................................................
Answer: V = 3.4 L
Explanation: Use Boyle's Law to find the new volume. P1V1 = P2V2, derive for V2, then the formula will be V2= P1V1 / P2
V2 = 2.5 atm ( 4.5 L ) / 3.3 atm
= 3.4 L