1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalka [10]
3 years ago
8

Which of the following statement describes an actual orbit

Physics
2 answers:
Leno4ka [110]3 years ago
7 0

I suppose right answer is d because staellite means an object that move around the larger object and Jupiter also moves around the Sun

Papessa [141]3 years ago
6 0

Answer:

The Moon is a satellite of Earth

Explanation:

You might be interested in
(NEED HELP PLEASE) A physics student goes to the roof of the school, 24.15 m above the ground, and drops a pumpkin straight down
slavikrds [6]

Answer:

t = 2.2 s

Explanation:

Given that,

Height of the roof, h = 24.15 m

The initial velocity of the pumpkin, u = 0

We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

h=ut+\dfrac{1}{2}at^2

Here, u = 0 and a = g

h=\dfrac{1}{2}gt^2\\\\t=\sqrt{\dfrac{2h}{g}} \\\\t=\sqrt{\dfrac{2\times 24.15}{9.8}} \\\\t=2.22\ s

So, it will take 2.22 s for the pumpkin to hit the ground.

7 0
3 years ago
I need help with 23 please.
Ne4ueva [31]
The answer is c.

hope this helps! :)
8 0
3 years ago
xConsider the following reduction potentials: Cu2+ + 2e– Cu E° = 0.339 V Pb2+ + 2e– Pb E° = –0.130 V For a galvanic cell employi
slega [8]

Answer:

Approximately \rm 90\; kJ.

Explanation:

Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction (E^{\circ}(\text{cell})) is equal to

E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode}).

There are two half-reactions in this question. \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu and \rm Pb^{2+} + 2\,e^{-} \rightleftharpoons Pb. Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of E^{\circ}(\text{cell}) should be positive.

In this case, E^{\circ}(\text{cell}) is positive only if \rm Cu^{2+} + 2\,e^{-} \rightleftharpoons Cu is the reaction takes place at the cathode. The net reaction would be

\rm Cu^{2+} + Pb \to Cu + Pb^{2+}.

Its cell potential would be equal to 0.339 - (-0.130) = \rm 0.469\; V.

The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:

\Delta G^{\circ} = n \cdot F \cdot E^{\circ} (\text{cell}),

where

  • n is the number moles of electrons transferred for each mole of the reaction. In this case the value of n is 2 as in the half-reactions.
  • F is Faraday's Constant (approximately 96485.33212\; \rm C \cdot mol^{-1}.)

\begin{aligned}\Delta G^{\circ} &= n \cdot F \cdot E^{\circ} (\text{cell})\cr &= 2\times 96485.33212 \times (0.339 - (-0.130)) \cr &\approx 9.0 \times 10^{4} \; \rm J \cr &= 90\; \rm kJ\end{aligned}.

5 0
2 years ago
Which of the following examples illustrates static friction?
vivado [14]

Answer:

A box sits stationary  on a ramp

Explanation:

Static friction is a force which keeps an object at rest as it is in the case of the box. It has to be overcome for the object to be set into motion.

Static force of friction is calculated as follows:

F= μη

F is static force of friction.

μ is the coefficient of static friction.

η is the normal force.

6 0
3 years ago
8. An effort force of 15 Newtons is applied to an ideal pulley system to lift up a 16 Newton object. If the effort force is exer
Sonbull [250]

Answer:

the distance that the object is raised above its initial position is 5.625 m.​

Explanation:

Given;

applied effort, E = 15 N

load lifted by the ideal pulley system, L = 16 N

distance moved by the effort, d₁ = 6 m

let the distance moved by the object = d₂

For an ideal machine, the mechanical advantage is equal to the velocity ratio of the machine.

M.A = V.R

M.A = \frac{Load}{Effort} = \frac{L}{E} \\\\V.R = \frac{disatnce \ moved \  by \ the \ effort}{disatnce \ moved \  by \ the \ load} = \frac{d_1}{d_2} \\\\For \ ideal \ machine; \ M.A = V.R\\\\\frac{L}{E} = \frac{d_1}{d_2} \\\\d_2 = \frac{E \times d_1}{L} \\\\d_2 = \frac{15 \times 6}{16} \\\\d_2 = 5.625 \ m

Therefore, the distance that the object is raised above its initial position is 5.625 m.​

3 0
2 years ago
Other questions:
  • Compared to the density of liquid water, the density of an ice cube is
    8·2 answers
  • What characteristic of an atom determines its properties
    5·1 answer
  • A generator's maximum output is 220 V. What is the rms potential difference?
    15·1 answer
  • The surface below sedimentary rocks that overlie igneous or metamorphic rocks is termed a(n) ____.
    14·1 answer
  • A solid yellow line on your side of the center stripe means pass with care.<br> A. True<br> B. False
    7·1 answer
  • A sound wave with a frequency of 300 hertz is traveling through a medium at a speed of 320 meters/second. What is its wavelength
    10·2 answers
  • A 5.0 c charge is 10 m from a small test charge. what is the magnitude of the electric field at the location of the test charge
    11·1 answer
  • A rectangular certificate has a perimeter of 32 inches. Its area is 63 square inches. What are the dimensions of the certificate
    8·1 answer
  • A person weighs 60 kg. The area under the foot of the person is 150 cm2. Find the pressure exerted on the ground by the person.
    11·1 answer
  • Calculate the momentum, A bald eagle with a mass of 26.4 kg and velocity of 15.6 m/s​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!