Answer:
The process of dissolving can be endothermic (temperature goes down) or exothermic (temperature goes up).
When water dissolves a substance, the water molecules attract and “bond” to the particles (molecules or ions) of the substance causing the particles to separate from each other.
The “bond” that a water molecule makes is not a covalent or ionic bond. It is a strong attraction caused by water’s polarity.
It takes energy to break the bonds between the molecules or ions of the solute.
Energy is released when water molecules bond to the solute molecules or ions.
If it takes more energy to separate the particles of the solute than is released when the water molecules bond to the particles, then the temperature goes down (endothermic).
If it takes less energy to separate the particles of the solute than is released when the water molecules bond to the particles, then the temperature goes up (exothermic).
Explanation:
I believe the answer is B. Magnesium bromide , if I helped..... You're welcome
Answer:
Part 1: - 1.091 x 10⁴ J/mol.
Part 2: - 1.137 x 10⁴ J/mol.
Explanation:
Part 1: At standard conditions:
At standard conditions Kp= 81.9.
∵ ΔGrxn = -RTlnKp
∴ ΔGrxn = - (8.314 J/mol.K)(298.0 K)(ln(81.9)) = - 1.091 x 10⁴ J/mol.
Part 2: PICl = 2.63 atm; PI₂ = 0.324 atm; PCl₂ = 0.217 atm.
For the reaction:
I₂(g) + Cl₂(g) ⇌ 2ICl(g).
Kp = (PICl)²/(PI₂)(PCl₂) = (2.63 atm)²/(0.324 atm)(0.217 atm) = 98.38.
∵ ΔGrxn = -RTlnKp
∴ ΔGrxn = - (8.314 J/mol.K)(298.0 K)(ln(98.38)) = - 1.137 x 10⁴ J/mol.
Answer: 44g
Explanation: The formular for finding Moles is ;
Moles = Mass / Molar Mass or Formular Mass.
Base on this question; Moles = 10, Mass = 440g, and Formular Mass = ?
Making 'Formular Mass', subject of the formular; we thus have;
Formular mass = Mass / Moles = 440/ 10 = 44g
<span>For this reaction, oxidation number of Carbon in
CO would be +2 while oxidation number of carbon in CO2 would be +4 and so this
means that carbon has oxidized. Oxidation number of nitrogen in NO is +2. While
oxidation number of nitrogen in N2 is 0 so this means that nitrogen had reduced.
The reducing agent is the one which provides electrons by oxidizing itself so
in this case; CO is the reducing agent while the C in CO oxidized to produce
electrons. </span><span>I
am hoping that this answer has satisfied your query about and it will be able
to help you, and if you’d like, feel free to ask another question.</span>