Answer
given,
mass of copper rod = 1 kg
horizontal rails = 1 m
Current (I) = 50 A
coefficient of static friction = 0.6
magnetic force acting on a current carrying wire is
F = B i L
Rod is not necessarily vertical


the normal reaction N = mg-F y
static friction f = μ_s (mg-F y )
horizontal acceleration is zero


B_w = B sinθ
B_d = B cosθ
iLB cosθ= μ_s (mg- iLB sinθ)





B = 0.1 T
Carbon: C, 12.011, 6, 12
Oxygen: O, 8, 8, 8, 16
Boron: B, 10.811, 5, 5, 11
Answer:
The environment is warmed by the light throughout the day, such that the temperature increases. The weather is decreasing and the temperature decreases in the night as the sun falls. There was a misunderstanding. Thanks to the density, the atmosphere becomes densest on the earth. The air becomes colder and colder when you move up.
Explanation:
Answer is above
<em><u>Hope this helps.</u></em>
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556
Answer:
240 Ω
Explanation:
Resistance: This can be defined as the opposition to the flow of current in an electric field. The S.I unit of resistance is ohms (Ω).
The expression for resistance power and voltage is give as,
P = V²/R.......................... Equation 1
Where P = Power, V = Voltage, R = Resistance
Making R the subject of the equation,
R = V²/P.................... Equation 2
Given: V = 120 V, P = 60 W.
Substitute into equation 2
R = 120²/60
R = 240 Ω
Hence the resistance of the bulb = 240 Ω