<span>Balanced nuclear reaction: 234/91 Pa → 4/2 He + 230/89 Ac.
1) number of protons and neutrons on both side of nuclear reaction must be the same. There are 91 protons (atomic number) and 143 neutrons (mass number - atomic number, 234 - 91 = 143 or (4-2) + (230 - 89) = 143)) on both side of reaction.
2) a</span>lpha
decay is radioactive decay<span> in which
an atomic nucleus emits
an alpha particle (helium
nucleus) and transforms into an atom with an atomic
number that is reduced by two and mass number that is reduced by four, so atomic mass of new element is 89 (91 - 2) and mass number is 230 (234 - 4 = 230).
3) look at atomic number, element with atomic number 89 is actinium.</span>
Answer:
The standard enthalpy of formation of HgO is -90.7 kJ/mol.
Explanation:
The reaction between Hg and oxygen is as follows.

From the given,
Molar mass of HgO = 216.59 g/mol
Mass of HgO decomposed = 18.5 g
Amount of heat absorbed = 7.75 kJ
From the reaction,
The standard enthalpy of formation = 
During the decomposition of 1 mol of HgO , 90.7 kJ of energy absorbed.
For the formation of 1 mol of HgO , 90.7 kJ of energy is release
Therefore, the enthalpy of formation of mercury(II)Oxide is -90.7 kJ/mol
In decomposition, two or more reactant combine to form one product only.
Answer:
700 calories
Explanation:
Using the formula below:
Q = m × c × ∆T
Where;
Q = amount of heat required (calories)
m = mass of substance (g)
c = specific heat of substance (cal/g°C)
∆T = change in temperature (°C)
According to this question, the following information was provided;
Q = ?
m = 20g
c = 1.0 cal/g °C
∆T = 40°C - 5°C = 35°C
Using the formula; Q = m × c × ∆T
Q = 20 × 1 × 35
Q = 700 calories
Hence, 700 cal of heat energy is needed to raise 20 g of H2O from 5°C to 40°C.
Susan should follow PEMDAS,
Parentheses
Exponents
Multiplication
Division
Addition
Subtraction,
So, the first step should be, to solve the equation in the parentheses.
I hope this helps!